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Abstract

Scrutinizing Schrödinger’s derivation we find that the notion of the
alleged breach of the laws of classical mechanics cannot be upheld. For
closed systems, only a shift of the point of view is necessary. Away
from the established picture of a point mass moving in phase space
toward a pure energy representation of this motion: Applying a vari-
ational procedure to a special form of the Hamilton-Jacobi equation
Schrödinger aimed at identifying extreme values of the mechanical to-
tal energy in closed systems. Known as belonging to stationary states
the energy eigenvalues to his time-independent equation are these ex-
treme values. They are shown to represent extraordinary situations
of dynamic balance. Their mechanical features require that they be
independent of time and their number countable. Lacking any accel-
erations, they cannot emit electromagnetic radiation.

For the description of the general dynamic behavior in closed sys-
tems in terms of an energy representation, contrary to Schrödinger’s
original intention, the expansion must be applied to the eigensolutions
of his time-dependent equation. Conserving the total energy at any
time, the resultant time-dependent state vectors entail time-dependent
general expectation values for the constituent energies, which period-
ically exchange a certain amount of energy in accordance with the
classical Virial theorem for the respective potential. The reason why
they do so is that the total time derivative of these general expecta-
tion values behaves analogously to the classical equation of motion of
an arbitrary function where Poisson’s bracket is equivalently replaced
with the respective commutator. This survey mentions several, mostly
wellknown examples details of which may be found elsewhere.
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1 Introduction

From its very beginning, quantum mechanics has been plagued by episte-
mological difficulties: Be it Bohr’s wondering about “peculiar” stationary
states [1, 2], which not only he considered to exclusively represent physical
reality in spite of allegedly being in contradiction to classical electrodynam-
ics, be it what has become known as the measurement problem [3], von Neu-
mann’s insistence on the pretended fact that, as a consequence, state vectors
have to “collapse” upon measurement or be it the hypothesis of instanta-
neous “quantum jumps” [1, 2, 4–7]. All these ideas have led Bohr [8, 9] and
many other early proponents of quantum mechanics [10, 13–22] to the com-
monly shared conviction that it is not possible in the atomic realm to describe
continuous space-time dynamics. In their view, this discontinuity has to be
assumed as a consequence of the fact that since Planck’s discovery [23, 24]
the energy is deemed only capable of discontinuous, so-to-say, “piece-wise”
changes [2, 5, 8, 9, 16, 18, 25–27]. Hence, spurred by the idea that everything
in the atomic realm must be different and in order to somehow make ends
meet Heisenberg proposed the necessity of a search for new kinematic and
mechanical relations [10,14–17,28]. The well-known results of this search are
his “uncertainty relations” [5,19], which were and still are being considered to
confirm this “discontinuum” theory. Especially the “uncertainty relations”
are deemed to justify the assumption of the alleged indeterminacy, i.e., the
absence of causality as a result of the inherent fundamental impossibility to
describe the dynamics of individual particles [13,18,20,26,29,30]. Therefore,
according to Heisenberg [28], one should only concentrate on observables,
i.e., properties, which he considered measurable, like energies, frequencies,
and transition probabilities and not care about descriptiveness or even try
to explain the dynamics in individual particles.

What is puzzling about this alleged deep division between classical and
quantum mechanics is the fact that Schrödinger’s equations [31–35], actually
the key foundations of quantum mechanics, are deeply rooted in classical
mechanics. Especially his time-dependent equation [35], a linear partial dif-
ferential equation in space and time, is synonymous for continuous action,
i.e., for determinacy and causality, of the properties represented by it. The
widely accepted Copenhagen interpretation, however, only allows these fea-
tures to apply to his so-called wave function in terms of a conservation of
probability density. Nevertheless, Schrödinger denounced the ideas of discon-
tinuous behavior in the atomic world. Legendary is his dispute with Bohr
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during his visit in Copenhagen about “quantum jumps” [37]. Despite all
the general appreciation of his findings, Schrödinger’s stand was criticized by
many of his contemporaries and his achievements were even denounced as
quasi-classical [20, 21] or distracting [5] in spite of acknowledging [15, 20, 21]
that the seemingly diametrically opposite approaches by him and Heisenberg
had independently been proven to be equivalent [3, 33, 38].

Even nowadays, 94 years after Schrödinger’s discovery, there is widespread
confusion about how classical and quantum mechanics correlate despite the
fact that objective, in some sense even classical pictures are being used in
order to understand phenomena that are not accessible to human senses.

However, with all the mathematical tools that have been developed since,
we shall show, based on Schrödinger’s equations, that it is possible to de-
scribe continuous behavior in a very classical way: While the eigensolutions
to Schrödinger’s time-independent equation exclusively isolate the total en-
ergies of extraordinary situations of dynamic balance the expansion applied
to the eigensolutions of Schrödinger’s time-dependent equation embraces all
kinds of dynamic behavior from an energy perspective by primarily allow-
ing to describe multiple periodic energy exchanges as part of the general
nonstationary dynamics in closed systems. This will be our focus here.

While here only a gross account can be given, many familiar examples and
detailed calculations may be found in [39,40]. At this point, we want to draw
attention especially to Part II in [39] where we demonstrate that the complete
time evolution of a spontaneous transition between two isolated energy levels
can be described as being driven by unbalanced internal dynamics. Without
having to resort to QED, this description is capable of naturally explaining
all features found experimentally.

2 Schrödinger’s derivation

2.1 The classical starting point

For illustrating how in the early days of quantum mechanics the prevalent
zeitgeist influenced the interpretation of its results and to prove our claim
we shall take a very close look at Schrödinger’s derivation. However, before
blaming anyone for anything we should get aware of the fact that until about
120 years ago the physical thinking in mechanics was dominated by the imag-
ination of a mass point moving in phase space and, therefore, by equations
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of motion. This may be the reason why Heisenberg, with his “uncertainty
relations” in mind [5,17–19], recommended that one should no longer try to
find ways of how to calculate, for instance, basically unobservable electron
orbits, or, as Dirac put it in following Heisenberg’s opinion [41], “science is
concerned only with observable things” and “what cannot be investigated by
experiment, should be regarded as outside the domain of science”. Instead,
one should concentrate on establishing relations between truly observable
properties as, according to Heisenberg’s conviction, only represented by the
elements of diagonal matrices [5, 14, 41–43], i.e., the expectation values of
stationary properties in the respective stationary states.

In order to understand how it all began we start with the well-known
canonical equations of classical mechanics, i.e. Hamilton’s equations

q̇k =
∂H(pk, qk)

∂pk
, ṗk = −

∂H(pk, qk)

∂qk
(1)

where Hamilton’s function

H(pk, qk, t) =
∑

k

pkq̇k − L(qk, q̇k, t) (2)

and Lagrange’s function L(qk, q̇k, t) depend on f generalized coordinates qk
(k = 1,2,...,f = 3N - n), f canonically conjugate generalized momenta pk, and
f related generalized velocities q̇k as well as, possibly, explicitly on time t.
The degree of freedom f for a system of N point masses consists of the
three lateral degrees of freedom for each individual point mass minus the n
constraints imposed on the system.

The canonical equations represent the simplest form of equations of mo-
tion. Once Hamilton’s function is known the generalized variables of position
and canonically conjugate momentum can be obtained by integration.

The total time derivative of an arbitrary function F (pk, qk, t), which de-
pends on the same variables and, possibly, explicitly on time, is often called
the equation of motion of F (pk, qk, t). With Hamilton’s equations from
Eq. (1) inserted this equation of motion can partially be expressed by what
is called Poisson’s bracket

dF (pk, qk, t)

dt
=
∂F (pk, qk, t)

∂t
+
{

F,H
}

(3)
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where Poisson’s bracket is given by

{

F,H
}

=

f
∑

k

{

∂F (pk, qk, t)

∂qk
×
∂H(pk, qk)

∂pk

−
∂F (pk, qk, t)

∂pk
×
∂H(pk, qk)

∂qk

}

. (4)

Poisson’s bracket and its quantum mechanical counterpart, the respective
commutator, will play an important role further on because if this arbitrary
function does not depend on time explicitly the equation of motion of F (pk, qk)
in Eq. (3) is exclusively determined by Poisson’s bracket. If this bracket
vanishes F (pk, qk) is representing a stationary property.

2.2 Conservative forces

For conservative forces Lagrange’s function does not depend on time explicitly
and is given by

L(qk, q̇k) = T (qk, q̇k)− V (qk) , (5)

i.e., by the difference between the kinetic energy T (qk, q̇k) and the potential
energy V (qk). It is also called the kinetic potential.

As a result of Eq. (2), Hamilton’s function as well does not depend on
time explicitly in this case. Additionally, as its Poisson’s bracket vanishes
because of Eq. (4), Eq. (3) makes it a constant of the motion. With Eqs. (2)
and (5) we get

H(pk, qk) = 2T − (T − V ) = E , (6)

i.e., Eq. (6) expresses the conservation of the mechanical total energy E.
As this expression does not include any friction, for instance, this re-

duced form of the conservation of energy only holds true for a closed, purely
mechanical system.

Thus, whenever we use such a kind of Hamilton’s function we are always
dealing with an abstract thought model where we can only consider theoret-
ically how a purely mechanical closed system would evolve according to its
unperturbed self-dynamics when it would be totally isolated from the outside
world. As a consequence, we can only study the behavior of a closed model
system, which is rather far away from reality. In doing so for a reasonable set
of adequate situations we have to choose related initial conditions a priori.
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2.3 The Hamilton-Jacobi partial differential equation

The integration of the canonical equations of many-particle systems is of-
ten tedious. In order to make this task easier one usually tries to find new
variables that allow to do the job more efficiently. One such canonical trans-
formation of special interest here keeps the original position coordinates but
seeks new canonically conjugate momenta with the help of a so-called short-
ened action function S(qk, Pk), i.e., without explicit dependence on time

pk =
∂S(qk, Pk)

∂qk
. (7)

Insertion into Eq. (6) brings about the Hamilton-Jacobi partial differential
equation for conservative systems

H

(

∂S(qk, Pk)

∂qk
, qk

)

= E . (8)

2.4 Schrödinger’s choice

The Hamilton-Jacobi equation of Eq. (8) is the starting point of Schrödinger’s
derivation [20, 21, 31]. This derivation is deemed to be well-known. Never-
theless, it seems to us some physical aspects of its result have not been given
the necessary attention in the past. For these aspects to unfold we have to
take a very close look at what the mathematics are really telling us.

Contrary to the original purpose, it was not a simplification of the inte-
gration of Hamilton’s equations that Schrödinger had in mind when using
the Hamilton-Jacobi equation: Rather, by choosing

S (q) = ~ ln ψ(q) , (9)

i.e, a generating action function proportional to the natural logarithm of an
unknown, only position-dependent auxiliary function ψ(q) he was aiming at
a totally different target, namely, at finding the extreme values of the total
energy E by applying a variational procedure to the infinitely extended space
integral over this special form of the Hamilton-Jacobi equation

δJ = δ

∫

+∞

−∞

[

H

(

~

ψ

∂ψ

∂q
, q

)

− E

]

dτ = 0 . (10)

Note that the auxiliary function ψ(q) depends on only a single set of position
variables, i.e., it applies to a single particle.
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As we want to work out the classical aspects of Schrödinger’s results we
do not care about what this auxiliary function ψ(q) might mean physically.
Therefore, we shall avoid to call it by its commonly known name. For what
we want to show here, all we need to know about ψ(q) are its mathematical
properties, especially with respect to an integration over all space.

It is well-known that the hydrogen atom was a hot topic during the first
decades of the 20th century. The reason for Schrödinger’s choice becomes
obvious when we write out his special Hamilton-Jacobi equation for the hy-
drogen atom (atomic Kepler problem) in full length

(

∂ψ

∂x

)2

+

(

∂ψ

∂y

)2

+

(

∂ψ

∂z

)2

−
2m

~2

(

E +
e2

r

)

ψ2 = 0 . (11)

The choice in Eq. (9) effects that ψ(r) as well as its first spatial derivatives
occur as quadratic forms. Given the unknown properties of the unknown
auxiliary function ψ(r) this choice makes sure that nothing is averaged out
and lost in the integration over all space to be performed in conjunction with
the variational procedure according to Eq. (10).

The purpose of this variational procedure is to determine the unknown
auxiliary function ψ(r) such that it makes the variation of the integral vanish
in Eq. (10) and to find relative extreme values of the total energy E in the
closed system. Following Schrödinger’s original path this demands that

δJ = δ

∫

+∞

−∞

dτ

[

(∇ψ)2 −
2m

~2

(

E +
e2

r

)

ψ2

]

= 0 . (12)

In order to transfer the variation onto ψ(r) and to simultaneously linearize
the integrand use is made of the well-known differential vector relation

∇(ψ∇ψ) = (∇ψ)2 + ψ∆ψ . (13)

This brings about

δJ = δ

∫

+∞

−∞

dτ

{

div(ψgradψ)−

[

ψ∆ψ +
2m

~2

(

E +
e2

r

)

ψ2

]}

= 0 . (14)

The volume integral over all space of the partial integrand with the addition-
ally occurring div term can be transformed with the help of Gauss’s theorem
into a surface integral that encloses this infinitely extending volume

δJ = −

∫

+∞

−∞

dτ δψ

[

∆ψ +
2m

~2

(

E +
e2

r

)

ψ

]

+

∮

δψ
(

∇ψ ·d~f
)

= 0 . (15)
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For this expression to vanish as a whole for any arbitrary variation δψ the
unknown auxiliary function ψ(r) has to meet two demands simultaneously :

First : The expression in square brackets in the volume integral must van-
ish, i.e., ψ(r) must be a solution to Schrödinger’s time-independent equation!

Second : Simultaneously, the surface integral must disappear for any ar-
bitrary variation δψ: The directional derivative of ψ(r) in the integrand
vanishes with certainty at infinity and independently of any direction if ψ(r)
itself vanishes at infinity.

If both requirements are met the solutions ψ(r) to Schrödinger’s equation
represent relative extreme values of the mechanical total energy [44].

These extreme values belong to extraordinary dynamic situations of a dy-
namic balance. They are only possible in bound systems. As acts of balance,
they must be independent of time and their number must be countable.

This latter requirement is satisfied by the second demand and can equally
be met for bound states only: With ψ(r) vanishing at infinity a boundary
value problem is established for the solutions to Schrödinger’s equation [31].
Entailing an eigenvalue problem

Hψn(r) = Enψn(r) (16)

its eigensolutions ψn(r) naturally fulfill the mathematical requirement of
countability. The related energy eigenvalues En are the relative extreme
values of the mechanical total energy that have been searched for in the
closed system. This way, the solutions to Schrödinger’s equation establish
an energy representation of dynamical situations that are extraordinary in a
very classical sense as will be shown.

2.4.1 Consequences of an energy representation

From classical mechanics we know: If Hamilton’s function does not depend
on time explicitly the conservation of the mechanical total energy according
to Eq. (6) holds true for any arbitrary dynamic situation in the closed system.

Contrary to the general case, however, the solution ψn(r) to Schrödinger’s
equation selects one of those special dynamic situations for which the total
energy in the closed system has a relative extreme value in terms of the
eigenvalue En.

Other than the trajectory of a point mass moving in phase-space its en-
ergy representation is not affected by the uncertainty relations because the
relevant combinations of canonically conjugate variables do not occur!

8



2.5 What does separability mean physically?

In order to show how these extreme values of the mechanical total energy
come about and what their physical consequences we turn back to the exam-
ple it all began with [31], the hydrogen problem. For the sake of succinctness,
we shall only work out the essential points. For more details we refer to [39].
The hydrogen atom constitutes a spherical problem. With the Laplace op-
erator expressed in spherical coordinates Schrödinger’s equation reads

[

−
~
2

2µ

1

r2
∂

∂ r

(

r2
∂

∂ r

)

+
L2

2µr2
−
Ze2

r
− E

]

ψ(r, θ, φ) = 0 (17)

where

L2 = − ~
2

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2θ

∂2

∂φ2

]

. (18)

is the angular dependence given by the square of the operator of the or-
bital angular momentum. Well-known is the fact that the partial differential
equation in Eq. (17) can be separated into an angular and a radial part.

What does separability mean in this case? It means that only a special
dynamic situation can be described because it requires that the energies of the
angular and the radial motions be totally independent of each other. In a
spherical potential, there are two ways of how this can happen:

In the first case, the electron would move uniformly along a circular orbit.
Such a motion would imply a constant angular kinetic energy with a related
stationary orbital angular momentum of the electron and a constant potential
energy. Accordingly, we shall encounter these features as we proceed:

The result of the separation procedure is that both parts must equal a
constant, the separation constant. How the procedure continues, however,
is very important to the physical meaning: In the first step, the separation
constant is equated to the differential equation for the square of the operator
of the orbital angular momentum. Comparison with its eigenvalue equation
identifies the separation constant as the eigenvalue of this operator

L2 Yl,m(θ, φ) = ~
2l(l + 1)Yl,m(θ, φ) (19)

where the Yl,m(θ, φ) are the spherical harmonics. Taking the eigenvalue
~
2l(l + 1) to replace the separation constant in the differential equation for

the energy of the radial motion one obtains in the second step

d 2u(r)

d r2
+

2µ

~2

(

E +
Ze2

r
−

~
2l(l + 1)

2µr2

)

u(r) = 0 . (20)
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This equation for the radial energy features a binding potential, the so-called
effective potential, which is composed of the attractive Coulomb part and the
repulsive centrifugal barrier and, therefore, has a minimum for l finite.

Here, it becomes apparent what makes separability necessary: In the first
step a definite orbital angular momentum is determined as a multiple of ~.
Of all elliptical orbits with the same angular momentum in a 1/r potential
only the circular one has extremal total energy.

This is analogous to what Bohr originally only postulated [25, 45–48].
Here, however, his postulate is confirmed in a mathematically sound way.
We have to mention, though, that Bohr originally postulated integer linear
multiples of ~. He did so on the basis of planar polar coordinates because,
with circular orbits in mind [25,45], he figured that a stationary orbital angu-
lar momentum would define an orbital plane in space. By the way, using this
same kind of coordinates in Schrödinger’s equation for the two-dimensional
isentropic harmonic oscillator we show in [39] that the same separation proce-
dure results in the eigenvalue equation for the z component Lz of the orbital
angular momentum. Its eigenvalues are integer linear multiples of ~.

As for the effective potential, its minimum is fixed with regard to both
its constant radius and its value by the orbital angular momentum l 6= 0
determined in the first step in accord with Eq. (18)

rmin =
~
2l(l + 1)

µZe2
, (21)

Veff (rmin) = −
µZ2e4

2~2l(l + 1)
= −

Z2e2

2a◦l(l + 1)
(22)

where a◦ is the Bohr radius.
This procedure constitutes the impression that it is this minimum the

solution to Schrödinger’s time-independent equation apparently selects as
part of the extremum of the total energy. The physical significance of this
minimum may be doubted as one might object that only if an electron had no
finite inertial mass it could move uniformly and exactly on the equipotential
line at the bottom of the circular valley provided by the minimum of the
effective potential. Then its motion would be free of any accelerations.

Thus, separability of Schrödinger’s time-independent equation in spher-
ical coordinates would be the mathematical prerequisite for a uniform and,
therefore, physically stationary circular motion of a, so-to-say, wave-like elec-
tron. As separability excludes any coupling between the energies of the an-
gular and radial motions, it would select dynamic situations where these
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energies are totally independent of each other because of the constant ra-
dius of the minimum of the effective potential. This would not allow any
radial oscillations that could entail a periodic radial exchange between the
constituent energies. No exchange means no periodic accelerations of the
electron and, hence, no emission of radiation in excited stationary states.

However, any objection to above scenario is unfounded : Although an
electron’s finite inertial mass would always try to keep the electron moving
straight and, thus, would lead to a wobbling motion in this circular valley it
has to be stated that, given the inertial masses of electron and proton, its
coupling to the electromagnetic field is 39 orders of magnitude stronger than
its coupling to the gravitational field making the latter interaction totally
negligible in the atomic realm.

On the other hand, the notion of being capable of preparing a dynamic
balance by making the electron occupy exactly this kind of stationary state
is far from realistic as any such attempt would always involve a finite spread
of energy. Hence, at best, the motion of the electron will not be exactly
circular but superposed by extremely small radial oscillations.

Nonetheless, the truth is we cannot tell from the results of Schrödinger’s
equation whether it is this behavior or another because the eigenenergies of
states with angular momentum as delivered by this equation must not coincide
with the energy at the bottom of the respective effective potential but have to
be somewhat less deeply bound [49, p188 ] as they also have to incorporate
the energy of the angular motion in order to represent the total energy.

S states with l = 0 constitute the second case where the separation of
the spherical problem makes the energies of the angular and radial motions
independent of each other. With only radial motions possible the S states
cannot represent a dynamically stationary physical situation even in a strictly
closed system because, from a classical viewpoint, an attractive, all the way
pure Coulomb potential forces the electron into a continuously accelerated
radial motion toward a point-like nucleus: The continuously growing nonrel-
ativistic kinetic energy tends toward +∞ while simultaneously the potential
energy tends toward −∞ in a way that their sum, the total energy, remains
a constant relative extremum because generally for V (r) = +qQ/r

+
dT (r)

dt
= ṙ·mr̈ = ṙ

qQ

r2
= −

dV (r)

dt
(23)

Here, we already see a shortcoming of an energy representation based on
the conservation of the total energy in closed systems, namely, that such a
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representation neither cares about whether an individual dynamic situation
is physically reasonable or even possible nor whether an individual dynamic
situation differs from other ones if only all have the same total energy. De-
generacy is the key feature in this respect, as we shall see further below.

As for the experimentally verified S states, their existence is evidence for
the fact that the nucleus is not point-like in the mathematical sense, which
the pure Coulomb potential makes believe, but has a finite volume, though
about 15 orders of magnitude smaller than the one where the electron moves.
As the nucleus affects only a minute part of an s electron’s trajectory it has
only a very subtle effect on its energy. The volume effect of isotopic line
shifts is the keyword in this respect. More details are discussed in [39].

Just as Bohr [45,48] originally saw it, the stationary circular motion of the
first case would be the result of a dynamic balance between the centrifugal
and the centripetal forces. As indicated above, however, a more realistic
result is an only quasi-stationary situation. Discussed in [39] it is prone
to spontaneous transitions. A counterexample is an elliptical orbit where
angular and radial motions are coupled and, therefore, not separable. It
would always show periodic accelerations.

From all what we have seen so far it is clear that there can only be
one possible dynamic balance at a time. Therefore, although mathemat-
ically tempting because of the linearity of Schrödinger’s equation it does
not make any sense physically to apply the expansion to the eigensolutions
of Schrödinger’s time-independent equation. Nevertheless, it has been done
since. And it is still causing much irritation! To make ends meet one has
resorted to the probability interpretation of the absolute squares of the mix-
ing coefficients [13, 14, 20, 22, 29]. This interpretation in terms of a “catalog
of possible results” entailed the measurement problem [3] with the related
necessity of a “collapse” of the time-independent state vector. In order to
mitigate the problems related to that collapse the concept of environmentally
induced decoherence has been brought into play since the early 1980’s [50–52].
Even today, many unintelligible results of quantum mechanics can directly
be traced to this practically exclusively accepted interpretation.

All these wiggle-room pitfalls disappear, as we shall see, once we apply,
contrary to Schrödinger’s original notion [35,36], his time-dependent equation
to single closed systems. Application of the expansion with its time-dependent
eigensolutions generates time-dependent state vectors [12, 36]. They lead to
time-dependent general expectation values, which behave classically.
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3 Schrödinger’s time-dependent equation

If we compare Schrödinger’s boundary value problem with the one for a
clamped membrane we see that his time-independent solutions represent
what would correspond to the node lines of the vibrating membrane but leave
its other parts unconsidered. For changing that we now turn to Schrödinger’s
time-dependent equation: In his forth communication [35] he extended his
theory to nonconservative systems by allowing of an additional small time-
dependent perturbation term in the Hamiltonian as present, e.g., during a
radiative transition. For being able to apply time-dependent perturbation
theory he had to find a way of how to introduce the time dependence in
ψ(r, t) without violating his previous findings for the unperturbed case. He
succeeded by comparing his results with an equivalent of an ordinary wave
equation and obtained his time-dependent equation this way

Hψ(r, t) = i~
∂

∂t
ψ(r, t) . (24)

Following Schrödinger the time dependence in the auxiliary function has
necessarily to be chosen in terms of a separable energy phase

ψ(r, t) = φ(r) e−iE
~
t (25)

in order to re-establish, when inserted into Eq. (24), the original eigenvalue
equation Eq. (16) for the space-dependent part

Hφn(r) = Enφn(r) . (26)

Its linearly independent eigensolutions φn(r) constitute a complete set of or-
thonormalized eigenfunctions. Owing to the way they have been constructed
in Eq. (25) the ψn(r, t) equally constitute a complete set of orthonormal
eigenfunctions. As Schrödinger’s time-dependent equation is a linear partial
differential equation with orthonormalized eigensolutions as well, the expan-
sion procedure is applicable to the solutions ψn(r, t). Schrödinger [36] did so
for a conservative system as well but only in terms of a time-dependent per-
turbation approach: Any change with time of an originally stationary state
has to be attributed to the action of a small but constant perturbation term.

Here, however, in order to work out the unperturbed internal dynamics
in nonstationary states we shall always consider single closed systems only:
Hence, Hamilton’s operator in Eq. (24) does not dependent on time explicitly.
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As a consequence, the conservation of the mechanical total energy holds true
as the time dependence exclusively pertains to the auxiliary function ψ(r, t).
This is our most important conclusion with regard to the descriptiveness of
the inner dynamics of single closed systems in terms of general expectation
values, albeit from a point of view directly related to energy.

3.1 Expansion in terms of the time-dependent eigen-

vectors ψn(r, t)

Like for the Cartesian unit vectors in Eucledean space, any arbitrary linear
combination of the ψn(r, t) represents, from an energy point of view, the
general dynamics in one of infinitely many nonstationary states in Hilbert
space. We shall designate it a normalized general state vector not seen this
way by Schrödinger [36].

Ψ(r, t) =
∑

n

anψn(r, t) =
∑

n

anφn(r) e
−i En

~
t (27)

where
∑

n

|an|
2 = 1 . (28)

Contrary to the state vectors usually found in textbooks, we shall be dealing
here with the time-dependent ones of Eq. (27). They represent general, i.e.,
usually nonstationary dynamic situations but, nevertheless, always conserve
the mechanical total energy of the closed system, as we shall see.

Moving in a dynamic Hilbert space, this general state vector is not “a
catalog of possible experimental results” as the mixing coefficients an are
sometimes referred to by the prevailing probability interpretation [53].

To the contrary, for theoretically describing various nonstationary situa-
tions in our abstract model system the mixing coefficients 0 ≤ |an| < 1 are
to be given in advance as the initial conditions. Then, they determine in a
parametrically continuous way not only the mechanical total energy of the
dynamics represented by respective nonstationary states in the closed system
but also the amount of periodic exchange between constituent energies.

Such an exchange is characteristic of the dynamics in nonstationary states
of closed systems. This exchange is not caused by perturbations but by the
system’s unbalanced inner dynamics. For demonstrating how this exchange
comes about we first have to introduce the general expectation value.
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3.2 The general expectation value of an arbitrary op-

erator

The general expectation value of an operator O describes the time depen-
dence of a property O also in nonstationary states. The characterization as
general refers to its generic state vector, the time-dependent general state
vector of Eq. (27). We define the general expectation value by

〈O〉 = 〈Ψ| O|Ψ〉 =
∑

m

∑

n

a∗man〈ψm| O|ψn〉

=
∑

m

∑

n

a∗mane
iEm−En

~
t〈φm| O|φn〉 . (29)

It is clear only the mathematical properties of φm and φn with regard to an
integration over all space matter for the matrix elements 〈φm| O|φn〉. The
first total time derivative of the general expectation value is obtained [54] as

d〈O〉

d t
=

∑

m

∑

n

a∗man
i

~
(Em − En) e

iEm−En

~
t〈φm| O|φn〉

+
∑

m

∑

n

a∗mane
iEm−En

~
t
〈

φm

∣

∣

∣

∂O

∂t

∣

∣

∣
φn

〉

, (30a)

d〈O〉

d t
=

1

i~

〈

Ψ
∣

∣

∣
[O,H]

∣

∣

∣
Ψ
〉

+
〈

Ψ
∣

∣

∣

∂O

∂t

∣

∣

∣
Ψ
〉

. (30b)

Comparison with Eqs. (3) and (4) shows that above equation is totally anal-
ogous to the classical expression because the properties of the commutator
exactly correspond to those of Poisson’s bracket. This corroborates our claim
that the expansion in terms of eigenvectors is physically meaningful only in
conjunction with the time-dependent eigensolutions to Schrödinger’s time-
dependent equation: Only then it can reproduce the classical equivalent.

The way we stipulated to use Schrödinger’s equations only for closed
systems admits only not explicitly time-dependent operators because the me-
chanical total energy has to be conserved. Thus, having to leave the second
term on the right hand side unconsidered only the description of closed sys-
tems is possible, and the equation of motion of the operator O in Eq. (30b)
is totally determined by the commutator between O and the Hamiltonian H
leaving only two possibilities: Either O commutes with H or it does not.
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3.2.1 O commutes with H

In this first case, O has the same eigenfunctions as H. Then, its matrix in
Eq. (29) has only diagonal elements and its general expectation value reduces
to a weighted sum of its eigenvalues

〈Ψ| O|Ψ〉 =
∑

n

|an|
2On . (31)

Hence, the general expectation value of the operator O here describes proper-
ties that are alway stationary independently of the actual dynamic situation.

Commutativity holds true especially for the Hamiltonian H itself. This
way, it makes sure that the mechanical total energy is conserved even if the
closed system is not in a stationary state

〈Ψ|H|Ψ〉 =
∑

n

|an|
2En = Etot . (32)

Provided the condition of normalization in Eq. (28) is met the sum in above
equation may be equal for different weights and energy eigenvalues. This
means different configurations in different nonstationary states, i.e., different
dynamic situations may have the same mechanical total energy. Hence, de-
generacy is an inherent feature of an energy representation of nonstationary
states in a closed system.

Noting that the expression in Eq. (32) is identical to the one propagated in
textbooks and obtained by using the usual, time-independent state vectors,
we find confirmed our claim that a “collapse” of the general state vector is
not a reasonable physical concept because it would violate the conservation
of the mechanical total energy in nonstationary states of the closed system.

Hence, there are no “many worlds” [55, 56] and no “parallel universes”!
Moreover, there is no measurement problem either because it is the time
average for a single particle and not an ensemble average that would be
measured. Also, an abstract closed system cannot be interfered with ex-
perimentally. For making the theoretical description of a real experiment
possible one would have to open the system and include the environment by
implementing all the necessary mathematical features in the Hamiltonian.

Concluding this first case we find that Einstein was right when he insisted
on “God does not toss dice!” [37].
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3.2.2 O does not commute with H

In this second case, when the operator O does not commute with the Hamil-
tonian H the time-dependent general expectation value of O describes truly
dynamic properties in nonstationary states of the closed system.

We have seen in section 3.1 that the expansion procedure composes a
general state vector of a countable number of time-dependent eigensolutions
ψn(r, t). As a result, the indices m and n in the double sum in Eq. (29) run
through the same set of natural numbers. This kind of countability effects
that always only square matrices occur in a general expectation value. These
square matrices have the same number of nondiagonal elements above and
below the main diagonal. This enables us to split this double sum into three
parts according to whether m = n, m > n, and m < n

〈O〉(t) = 〈Ψ(t)| O|Ψ(t)〉 =
∑

n

|an|
2On

+
∑

m>n

a∗mane
+i Em−En

~
t〈φm| O|φn〉

+
∑

m<n

ama
∗

ne
−i Em−En

~
t〈φn| O|φm〉 . (33)

Provided O is an Hermitean, i.e., self-adjunct operator its off-diagonal matrix
elements are related by

〈φn| O|φm〉 = 〈φm| O|φn〉
∗ , (34)

i.e., a transposed element equals the complex conjugate of the original ele-
ment. This makes the two lower sums in Eq. (33) complex conjugate to each
other. They add to obtain twice the real part

〈O〉(t) = 〈Ψ(t)| O|Ψ(t)〉 =
∑

n

|an|
2On (35)

+
∑

m>n

2ℜ
{

a∗man〈φm| O|φn〉
}

cos

(

Em − En

~
t

)

−
∑

m>n

2ℑ
{

a∗man〈φm| O|φn〉
}

sin

(

Em − En

~
t

)

.

This result demonstrates that the hermiticity of the matrix elements is a
stringent prerequisite for the ability to describe multiple periodic phenomena
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in closed systems the eigenfrequencies of which conform to how they were
originally postulated by Bohr [1, 2, 8, 9, 25–27,45–48,57]

ωm,n =
Em − En

~
. (36)

In this context, we have to mention that Schrödinger was strongly influenced
by de Broglie’s “phase wave” concept [58, 59], which he saw confirmed by
the undulatory character of the solutions to his time-independent equation
and, therefore, called them wave functions. All through the years, he kept
interpreting the time-independent spatial part of the eigenfunctions of the
stationary states as expressing proper vibrations in terms of standing waves
and the eigenenergies as equivalents of the eigenfrequencies of these proper
vibrations [7,13,26,27,29,31,36,37]. Transition frequencies, in his view, were
differences of these eigenfrequencies.

Because of energy conservation the eigenfrequencies in Eq. (36), in our
view the real ones, would not be observable outside a closed system. Their
simultaneous occurrence, however, is a characteristic feature of any boundary
value problem not only in closed systems: Just think of the overtones of a
clamped string.

All eigenfrequencies depend on the actual potential in the Hamiltonian,
which Schrödinger’s equation has been solved for. This is why a general
multiple periodic motion can usually not be expanded into a simple Fourier
series.

The number of active eigenfrequencies depends on the number of nonzero
matrix elements as well as on the given number of nonzero mixing coeffi-
cients. According to Eq. (32) these nonzero coefficients also determine the
mechanical total energy of any dynamic situation in the closed system.

This way the nonzero mixing coefficients act as initial conditions in the
abstract thought model of a closed system. In such a system these coeffi-
cients have to be constant in order to conserve the mechanical total energy
no matter what the dynamic state. Thus, as we have seen in Eq. (32), as
long as the system is to be considered closed any dynamic situation is en-
ergetically stable. As a closed system its dynamics cannot be affected by
external perturbations.

However, if we allow the system to become only quasi-closed and, so,
somewhat more realistic by relaxing the strict demand for this constancy
and by admitting a very slow time dependence (slow when compared with
the longest period of the inner oscillations) of the mixing coefficients we can
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describe, e.g., the time evolution of a complete spontaneous transition as
being driven by unbalanced internal dynamics. Details may be found in [39].
There it even turns out that this process becomes the more “jump”-like, i.e.,
the more instantaneous-like in the time domain, the higher the transition
probability.

3.3 For example: Hydrogen

Application of Eq. (35) to the atomic Kepler problem (hydrogen) obtains for
the general expectation value of the nonstationary radial kinetic energy [39]

〈Hkin〉(t) = +
∑

n=1

n−1
∑

l=0

+l
∑

m=−l

| an, l,m|
2

(

En +
Z2e2

a◦ n2

)

(37)

+ 2
∑

k>n=1

n−1
∑

l=0

+l
∑

m=−l

〈

Rk, l(r)
∣

∣

∣

Ze2

r̂

∣

∣

∣
Rn, l(r)

〉

ℜ
{

a∗k, l,man, l,m

}

cosωk, nt

− 2
∑

k>n=1

n−1
∑

l=0

+l
∑

m=−l

〈

Rk, l(r)
∣

∣

∣

Ze2

r̂

∣

∣

∣
Rn, l(r)

〉

ℑ
{

a∗k, l,man, l,m

}

sinωk, nt

and for the nonstationary radial potential energy [39]

〈 V 〉(t) = −
∑

n=1

n−1
∑

l=0

+l
∑

m=−l

| an, l,m|
2
Z2e2

a◦ n2
(38)

− 2
∑

k>n=1

n−1
∑

l=0

+l
∑

m=−l

〈

Rk, l(r)
∣

∣

∣

Ze2

r̂

∣

∣

∣
Rn, l(r)

〉

ℜ
{

a∗k, l,man, l,m

}

cosωk, nt

+ 2
∑

k>n=1

n−1
∑

l=0

+l
∑

m=−l

〈

Rk, l(r)
∣

∣

∣

Ze2

r̂

∣

∣

∣
Rn, l(r)

〉

ℑ
{

a∗k, l,man, l,m

}

sinωk, nt

where, of course, En = − Z2e2

2a◦ n2 . The constant parts in the first line in each of
these equations also embrace the constant energy of the underlying angular
motion. For details check with [39].

The multiple periodic radial exchange between the constituent energies
is obvious. The reason for this kind of its occurrence is related to the fact
that the electron moves in a highly anharmonic potential:

Mathematically, this behavior is being accounted for by how the eigen-
frequencies here originate from the structure of the energy eigenvalues: The
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higher the electron moves in the potential, i.e., the higher the available en-
ergy, the lower frequencies have to be added because the farther the electron
can move out into the shallower upper part of the Coulomb potential, the
slower becomes its motion there. In the simplest case the electron’s orbit is
an ellipse with only one frequency.

Connected with this exchange is the conservation of the mechanical total
energy

Etot =
〈

Hkin

〉

(t)+
〈

V
〉

(t) =
∑

n=1

n−1
∑

l=0

+l
∑

m=−l

| an, l,m|
2En = −

{〈

Hkin

〉

(t)
}

t
(39)

and that the time averages of the general expectation values of these energies
follow the classically well-known Virial theorem

2
{〈

Hkin

〉

(t)
}

t
= −

{〈

V
〉

(t)
}

t
=

∑

n=1

n−1
∑

l=0

+l
∑

m=−l

| an, l,m|
2
Z2e2

a◦ n2
, (40)

which holds for any dynamic situation in the closed system.
The conservation of the mechanical total energy in such a system is also

the reason why the frequencies of the very complex radial oscillations, which
effect said exchange of the electron’s energies, would only be perceptible in-
side the closed system by somebody who would hypothetically be able to
watch the electron. The reason being that the conservation of the mechan-
ical total energy is also responsible for the conservation of the total orbital
angular momentum by only allowing radial dependences for the operators
involved. This way, the orthonormality of the angular momentum eigen-
functions accounts for the constancy of the orbital angular momentum by
reducing the summations in Eqs (37) and (38) to the indices given there.

This is the second reason why these oscillations would not be capable
of generating electromagnetic radiation despite the degeneracy of the en-
ergy levels with respect to angular momentum quantum numbers. Thus, the
closedness of the system is the limiting factor for any further knowledge that
goes beyond these constraints.

Nevertheless, it shows us that the inner dynamics must not be left aside
when it comes to understand how, for instance, a spontaneous electromag-
netic transition evolves with time. For details we refer to Part II in [39]. In
this context, it proves fortunate that this process can be treated on the basis
of a balance between the decrease of the atomic total energy per unit of time
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and the power of the emitted electromagnetic radiation, i.e., so-to-say, on the
basis of an energy representation per unit of time. However, an essential pre-
requisite of the approximation used is the fact that the inner dynamics and
the instantaneous loss of energy due to spontaneous emission can be treated
on totally different time scales that are so far apart that the Hamiltonian
may still be considered not dependent on time explicitly. This is not possi-
ble for induced absorption or emission. Therefore, as these processes would
require an explicitly time-dependent Hamiltonian, Schrödinger’s equation as
we apply it here is basically not suited for their dynamic description.

3.4 Further examples

In this section we shall give a short account of further examples details of
which may be found in [39,40]:

3.4.1 Free particles

An energy representation of a free particle in a closed system need not care
about where it is and in which direction it is moving. With a flat potential
plane the particle finds the same conditions everywhere. Therefore, it can be
anywhere, even at infinity of an infinitely extended closed system. As a con-
sequence, an energy representation of a free particle must not comply with
the second requirement of Schrödinger’s variational procedure, the vanish-
ing of the auxiliary function at infinity. Hence, without having to meet the
boundary conditions the auxiliary functions need not be square integrable
and orthonormal because there is nothing to be linearly superposed: Each
particle keeps the initially given momentum once and for all because, due to
commuting with the Hamiltonian, the momentum is a constant of the mo-
tion as well. Especially the inclusion of the time dependence shows that wave
packets would violate this property. But there is no need of localization as
we elaborated on above: Each particle is in a stationary state for any initially
assumed nonrelativistic energy. The representation of their individual ener-
getic situation by a plane wave, which is infinitely extended in all directions
and characterized by a single wave number, is appropriate for a single particle
for above given reasons and not in contradiction to Schrödinger’s equation
because there are no relative extrema of the total energy that would have to
be counted. Therefore, from this point of view, there is no need to infer from
this representation of its total energy wave properties for the particle itself
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how it is being done, e.g., for the interpretation of scattering experiments.
On the other hand, however, the result for the total energy suggests for the
particle’s momentum the relation p = ~k and, therefore, wave properties.

3.4.2 The linear harmonic oscillator

The linear harmonic oscillator is one of the most irritating examples that
most textbooks would not want to miss dealing with. Stationary states in
such an oscillator that is really active: Classically incomprehensible! The
only classically stationary state one may think of as natural exists when the
particle is at rest on the bottom of the harmonic potential. This, however,
would correspond to the trivial solution 0 = 0 of H = E but an energy
representation has to deal with situations where E 6= 0.

In this context the question arises why do the solutions to Schrödinger’s
time-independent equation for the linear harmonic oscillator single out situ-
ations as stationary that evidently have total energies En > 0 ? The answer
may be as follows: If you do not care about an overall time dependence as
existing and only look at the tiny instant in time when the oscillator comes
to a total standstill at the turning point where the total energy equals the
maximum of the potential energy then you may call this instant stationary.

In order to exclude the trivial solution there has to be a minimal amount
of energy in the closed system, but simultaneously this amount has to com-
ply with the only characteristic feature of the given harmonic potential, its
eigenfrequency ω. Any linear harmonic oscillator can only admit one single
eigenfrequency for any nonrelativistic total energy! Mathematically this fea-
ture is being accounted for by the equally spaced eigenvalues En = ~ω(n+ 1

2
)

that belong to the orthonormal eigenfunctions ψn(x, t). These eigensolutions
must not be mistaken for representing lasting physically stationary states:
They do not exist for E 6= 0! This becomes immediately clear in conjunc-
tion with Eq. (35): The general expectation values of the kinetic and the
potential energy show the familiar and classically well-known exchange be-
havior with the frequency 2ω as well as the concomitant conservation of the
total energy while their time averages comply with the Virial theorem for a
harmonic potential, i.e., kinetic and potential energy have, on time average,
equal constant shares in the total energy.

The uncertainty relation is held responsible for what is being called “zero-
point” energy, namely, said minimal amount of energy: It is interesting to
see [39] that the general expectation value of the commutator between x̂
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and p̂x reproduces the well-known relation 〈[x̂, p̂x]−〉(t) = i~ for any non-
stationary dynamic situation while for the respective anti-commutator the
first time derivative of the general expectation value of the potential energy
is obtained 1

2
〈[x̂, p̂x]+〉(t) = m

2

d
dt
〈x̂2〉(t) in accord with the classical relation

xpx = m
2

d
dt
(x2). With the help of the definitions of the creation and an-

nihilation operators as well as their commutator relation an equivalent ex-
pression can be obtained for the operators alone, namely, [x̂, p̂x]+ = m d

dt
x̂2

and, in the same way, also the classical equation of motion for the oscillator:
d2

dt2
x̂ + ω2x̂ = 0. Additionally, as neither x̂ nor p̂x commute with the Hamil-

tonian H the linear harmonic oscillator must never stop oscillating! For this
to hold it is mandatory that there always be a constant amount of energy
in the closed system and, so, provides further evidence for the mathemati-
cal necessity of the so-called “zero-point” energy. This minimal amount of
energy, however, is not enforced by uncertainty relations but by the way of
how the physical situation is being described mathematically by an energy
representation that here must always pertain to nonstationary situations.

3.4.3 The two-dimensional isotropic harmonic oscillator

The two-dimensional isotropic harmonic oscillator features the same dynamic
behavior as the linear one not only with regard to energy exchange, conser-
vation of the total energy, and the Virial theorem. In spite of possessing
an orbital angular momentum it is equally not capable of holding physically
stationary states. This results from how the equidistant energy eigenvalues
En = ~ω(2N +1+M) = ~ω(n+1) feature a never vanishing ”1”, which has
to be attributed to the linear part of a particle’s motion: In this kind of har-
monic potential the motion of the particle is confined to a plane. Its orbital
angular momentum ~M characterized by the azimuthal quantum numberM
produces a centrifugal barrier, which keeps the particle automatically away
from the origin. Therefore, the motion of the particle in this potential con-
sists of a superposition of a uniform circular motion and a linear oscillation
superimposed on the former. Both types contribute to the periodic energy
exchange with the radial oscillation frequency 2ω. In three dimensions, this
is what happens to an ion in a Paul trap [60].
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3.4.4 The time dependence of spontaneous multipole transitions

Using a two-level model the power balance between the loss of atomic energy
in nonstationary states and the emitted radiative power provides a simple
nonlinear differential equation for the time dependence of the mixing coef-
ficients. This time dependence is capable of accounting for all features of
the light emitted in a complete spontaneous transition, and all this without
involving QED in the first place: The unpredictability of its occurrence in
a single atom is caused by the uncertainties in the preparation process and
related to the dwell time in a quasi-stationary situation that is followed by
a well-defined “jump time”, which also entails a corresponding coherence
length of the emitted pulse. The Fourier transform of its time-dependent
intensity distribution is dominated by a Lorentzian profile in the frequency
domain. The characteristic features of such a single emission process resolve
in a very natural way the conundrum of the alleged wave-particle duality
of what according to Einstein’s rather diffuse notion is since being called
“photon”: wave-like at low frequencies, particle-like at very high ones. The
knowledge of the individual process also makes it possible to understand why
a bulk of simultaneously excited atoms decays exponentially.

QED claims that only the quantization of the electromagnetic field makes
the spontaneous emission process intelligible as being induced by fluctuations
of the photon vacuum. This notion is related to the asymmetry of the action
of the creation and annihilation operators with regard to photon numbers.
Our model, however, shows that in a quasi-closed system these fluctuations
might at best contribute to this process by preventing any potentially truly
stationary state from surviving any longer period of time.

3.4.5 Angular momentum coupling in arbitrarily oriented mag-

netic fields

In most cases, an energy representation has the disadvantage that because
of the inherent degeneracy only indirect conclusions about the dynamic be-
havior of the particle in the closed system are possible. This shortcoming
does not matter very much as long as well-known classical problems are be-
ing dealt with. Beyond these cases it becomes problematic and takes some
fantasy. But there are exceptions. They are related to the rare cases where
a relevant property occurs linearly in the Hamiltonian. Even then it takes
the simplest of cases to allow an unambiguous and classically illustrative
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description of what is happening.
Such a case is the angular momentum coupling in an arbitrarily oriented

magnetic field when the two angular momenta are associated with spin 1

2
~

each but with different magnetic moments as, for instance, for the hyperfine
coupling in silver. The result of the quite straightforward but very volu-
minous calculations [40] is that the general expectation value of the resul-
tant total magnetic moment shows in the general nonstationary case a three-
dimensional motion consisting of a Lamor precession about the direction of
the external magnetic field superimposed on which are one longitudinal and
four transverse oscillation modes in accord with the eigenfrequencies that
the prevalent interpretation would relate to magnetic dipole (M1) “transi-
tions” with ∆MF = 0 and ∆MF = ±1, respectively, in the scheme of field-
dependent energy eigenvalues. These oscillation frequencies originate from a
very complex oscillation of the coupling angle that results from unbalanced,
on the one hand, mutually inflicted internal torques by the coupling mag-
netic moments and, on the other hand, those imposed on both of them by
the external magnetic field. The resultant nonstationary dynamics are re-
sponsible for the multi-frequency periodic changes of the length of the total
magnetic moment that go along with this oscillation of the coupling angle.
This behavior also explains how an atomic magnetic “antenna” works and
how the respective polarizations of the emitted M1 radiations come about.

The longitudinal oscillation mode is additionally responsible for a char-
acteristic feature of nonstationary states in a closed system: The periodic
exchange between constituent energies, here between the energy of angular
momentum coupling and the Zeeman energy. The reason for the involvement
of only the longitudinal oscillation mode is simple: The scalar product only
makes the longitudinal component of the total magnetic moment relevant to
the Zeeman energy.

If the vector of the total magnetic moment itself would be parallel to
the direction of the external magnetic field there would be no Lamor preces-
sion because the magnetic field cannot exert a torque on the total magnetic
moment. Notwithstanding this fact, there would still be a longitudinal os-
cillation of the length of the total magnetic moment because the internal
and external torques on the different constituent magnetic moments are not
balanced in the general case.

This result could not have been obtained on the basis of the “eigenstates-
only” doctrine. For a spin 1

2
~ it mandates that this spin only point either

“up” or “down” with respect to the field direction. This is how the result of
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the Stern-Gerlach experiment is being interpreted until this very day.
As for the interpretation of this experiment we find for the overwhelming

number of initial conditions that what starts at low field strengths as a non-
stationary situation of an induced total magnetic moment may end up as an
at least quasi-stationary one:

This behavior is owed to the difference of the force acting on the dif-
ferent constituents in the strong gradient in the stray-field zone before the
atoms enter the gap between the artificially crafted pole pieces. In a strongly
nonlinear feedback process the different pushes and pulls there make the
composition of the components of the eigenvectors change. Accompanied by
an energy transfer to or from the kinetic energy this causes the inner energy
to change toward one of the two at least quasi-stationary situations. This
naturally explains the experimental result [40].

This example also demonstrates how the energy eigenvalues represent
situations of dynamic balance: Whatever the direction of the field, in order
to be stationary the vector of the resultant total magnetic moment must,
first, be parallel to the field direction so that the field cannot exert a torque
on the total magnetic moment.

However, second, as long as the internal torques that the different cou-
pling magnetic moments mutually exert on each other and the different ex-
ternal torques inflicted by the field on them individually are not balanced
the length of the induced total magnetic moment would still keep oscillating
longitudinally irrespective of any decoupling that takes place in high fields.

In a closed system, all oscillation modes related to the coupling angle
are only absent and the balance of all torques is achieved if the coupling
of the constituent magnetic moments is prepared a priori with a specific,
field-dependent coupling angle. These coupling angles are responsible for
the anomalous Zeeman effect as they provide a field-dependent length of
the vector of the stationary total magnetic moment and, thereby, effect the
nonlinearity of the field dependence of the energy eigenvalues in the nonlinear
Zeeman regime. Thus, they make this effect a matter of purely magneto-
mechanical origin. In the field-free case, the Clebsch-Gordan coefficients
represent the coupling angles that make the system stationary.
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4 Conclusions

In section 2.4 we have reproduced how Schrödinger’s equation emerged from a
variational procedure. But on the first page of his second communication [32]
Schrödinger was reasoning about the way he obtained his results in his first
communication [31] and admitted that his course of action there was neither
intuitive and nor easy to understand. In a footnote on the same page of [32] he
therefore declared that he would not follow that course further on. He would
instead perceive Hamilton’s principle of variation as equivalent to Fermat’s
principle of wave propagation in configuration space.

At this point we have to explain that Schrödinger was so much devoted
to his wave interpretation that he never alluded to relative extreme values
of the total energy in the closed system as being selected by the result of
his variational procedure nor did he do so to the circumstance that these
results could represent extraordinary situations of dynamical balance. This
is our interpretation. However, given the many examples we have calculated
in terms of general expectation values and presented here as short excerpts
we are convinced that our interpretation is physically the most plausible one.

As long as we are dealing with Hamiltonians that do not depend on time
explicitly, we are only able to describe closed systems, which evolve with
time deterministically according to their intrinsic dynamics, and, as we have
shown, whose classically intelligible dynamic properties are equally well ac-
counted for by the quantum mechanical formalism, at least as far as it is
possible for an energy representation. This confirms their common classical
roots. Apart from degeneracies, varying settings, i.e., varying initial condi-
tions render the concomitant compositions of the general state vector capable
of continuously covering all energies and other potentially observable prop-
erties, however, for a closed system only in a parametrically continuous way.
Hence, as long as the system is considered closed and, therefore, theoreti-
cally not allowed to communicate its inner state, e.g., by voluntarily giving
away part of its energy in terms of spontaneously emitted radiation, a passive
hypothetical observer cannot tell from outside what is going on inside.

A closed system is a very abstract entity without a real existence, indeed.
However, if after interference from outside with a short preparation process
a real system finds itself in a situation where environmental influences are
so strongly reduced that they can only have a negligible impact we may
consider this a good experimental approximation of what we may at least call
a quasi-closed one. A real example would be an excited atom or molecule in
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a highly evacuated chamber where the mean free path exceeds the physical
dimensions of the chamber by orders of magnitude so that the collision rate
with rest gas particles can safely be neglected. A shielding against ambient
electromagnetic radiation may further help to improve this approximation.

For enabling a passive hypothetical observer to attain more knowledge, we
would have to relax the closure condition by demanding that any voluntary
temporal change of the total inner energy take place so slowly that the in-
stantaneous intrinsic dynamics are left practically unaffected. This keeps the
system quasi-closed by affecting the system’s energy noticeably only after a
great many cycles of the multiple periodic motion. Then, the passive observer
can get a lot of genuine information about the system and its dynamics like
frequency, polarization, and intensity of the spontaneously emitted radiation,
and all this without actively disturbing it during the emission process.

An experimental realization of this scenario would exist during the period
of time after this atom or molecule has been excited by a short laser pulse,
i.e., after the initial preparation of the total energy in the excited quasi-closed
system, when the particle is left all by itself. Then we have the situation that
its inner nonstationary dynamics evolve according to its almost not explicitly
time-dependent Hamiltonian. “Almost not explicitly time-dependent” means
that the progress of the spontaneous emission process is slow enough and the
instantaneous loss of internal energy small enough to leave its inner dynamics
adiabatically adjusted. The fingerprint character of the individual spectra is
evidence for the validity of this assumption.

That a system’s evolution is undisturbed by an observer is all the more
true the farther the distance between source and observer. If we take this
distance to astronomical scales like five billion light years, the formation of
the earth’s galaxy may still have been underway, and it was not foreseeable
that the evolution would eventually bring about intelligent human beings
that some day would be able to measure cosmic radiation. So, the measuring
process could neither have interfered with the source process nor could the
latter have been influenced be the observer’s consciousness [3,56]. Both pro-
cesses are totally decoupled in astronomical observations. This casts doubts
on the demand that in a quantum mechanical measurement source, radia-
tion, and detector always have to be considered one quantum mechanical
system [42]. Although basically correct, this demand would mean that every
conceivable interaction in this system would have to be accounted for in the
Hamiltonian describing it, a task that can hardly be accomplished.

The fundamental assumption in Bohr’s first postulate [25, 45, 46] was
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that an atomic system can permanently exist only in a number of stationary
states. This postulate has been axiomatically empowered by Born’s and his
coworkers’ [10–12] “eigenstates-only” doctrine that claims physical reality
exclusively for stationary states because observable properties are deemed to
be related to these states only. Although, as we have shown, this exclusive-
ness does not even hold for a closed system the respective dynamic situation
could nevertheless be possible where physically permissible. And although
extremely unlikely if not even impossible, the exclusiveness of this dictum,
however, is the basis for the pretended necessity of state vector collapse. It de-
mands that upon measurement the normalized sum over the absolute squares
of the mixing coefficients reduce to just one of them thereby pinpointing ex-
actly one final stationary state. For a real dynamic system, this is a rather
weird kind of assumption because a dynamic balance is extremely difficult
if not impossible to prepare. This makes stationary states extraordinary if
not even fictitious dynamic situations. An illustrative example is a magnetic
moment in a magnetic field: Dynamic balance and extremal energies for
θ ≡ 0 or π, nonstationary in between. Therefore, the focus should rather be
on the nonstationary states as represented by general state vectors because
only general expectation values describe the truly general dynamic situation
in a classically intelligible way, and they do so way beyond the extend pos-
sible with any order of time-dependent perturbation theory. This kind of
approximation theory is only the walking stick that the accepted doctrine
of “stationary states only” has to employ in order to overcome the inherent
denial of acknowledging the existence of deterministic dynamic processes.

However, as any time-dependent perturbation theory can only explore
the dynamics in the more or less closer vicinity of stationary states the en-
suing time dependence is restricted to the very early beginning of, e.g., a
spontaneous emission process. Providing only transition probabilities, this is
all what the application of first-order time-dependent perturbation theory is
capable of delivering on the basis of the interpretation that only eigenstates
represent physical reality. This way, a very selective perception of the general
dynamics and of reality has been raised to the doctrine of seemingly quantal
behavior. This would be tantamount to maintaining that only the node lines
on a drum hide are physically real but not the sound it makes.

This is not the case if the inherent dynamics are taken into account: Any
deviation from the exact point of balance is tantamount to a residual oscil-
lation that makes the quasi-closed system prone to spontaneous transitions
because the concomitant accelerations make the related effective potential,
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so-to-say, leaky. This is the feature that has been exploited in Part II of [39]
for the description of a complete spontaneous transition.

Concluding we state: Schrödinger’s derivation of his equations makes it
clear that the solutions to his time-independent equation represent special
dynamic situations. This property can only be seen in connection with his
time-dependent equation and the application of time-dependent state vectors
in closed systems. Related time-dependent general expectation values are
continuous and do not justify the claim of establishing “new physics”. To
the contrary, they represent a continuation of classical mechanics from a
different point of view, one that rather focuses on energy than on phase space.

Whether or not the solutions ψ(r, t), one way or another, have a physical
meaning of their own beyond their mathematical properties is not being dis-
puted here. What is seen questionable, however, is the alleged indeterminacy
of quantum mechanics as expressed by the probability interpretation [20–22].
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[6] Jordan, P.: Über quantenmechanische Darstellung von Quanten-
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